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The problem of the approximation of functions by Muntz polynomials on an
interval [a, h] with a> 0 is considered. It is shown that, in contrast to the
behaviour in approximating on an interval [0, h], for the approximation of a
function f by Muntz polynomials on [a, hJ, a> 0, the minimal deviation tends to
zero with a geometric rate for all functions f holomorphic in a sufficiently large
region around the interval [a, h]. Also a converse theorem is given. The results are
interpreted in the context of the equivalent (linear) problem of the approximation
of functions by exponential sums. (Ins Academic Press. Inc'

I. INTRODUCTION

Let C[a, b] denote the space of real valued continuous functions on
[a, b], a < b, endowed with the uniform norm

Ilfll la.hl : = max{ If(x)l: x E [a, b]}, fE C[a, b].

We consider the approximation of functions fE C[a, b], a> 0, by Muntz
polynomials from JI,,().,),

JI,,().,) : = { f a,.x i
,: a,. E IR}'

\' -= 0

nE N, (I )

on the interval [a, h], where (A.,) denotes a fixed sequence of real numbers
;"., I'E N:

°:s; ;'0 < ;, 1 < "', lim i, = XJ.
\' .... f

(2)

The classical Muntz theorem (cf. [12]) states that the system of
polynomials from JI,,(i,.) is dense in C[O,I] iff L'~=I(I/;,.l=jJ and
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i. o = O. The corresponding result for the approximation on an interval
[a, hJ with a> 0 has been proved independently by Clarkson and Erdos
(cf. [4 J) and L Schwartz (cf. [16 J). Given fEe C[a, hJ we are interested in
the asymptotic behaviour of the minimal deviation PIl(r (l,), [a, hJ),

PIlU,().,), [a,hJ):= min: (3 )

as n -+ J~.

Looking at the transformation

1= -log x, XE: [a, hJ,

.y= e " I E: [ -log h, -log a]. F(t) =f(e '),

f(x)=F( -log x),
(4)

(5 )nE N.

we see that the problem of the approximation of a function I(x) E: C[ a, h].
O:S.a<h< J~, by Muntz polynomials from IT Il ().,) on [ahJ is equivalent
to the problem of the approximation of F(t) E: C[ex, {IJ with x = -log h,
fJ = -log a on [x, (lJ by help of exponential sums from .;lll(i.,),

11 11(/,):= Sf a,e "', a'E[P;},1\. (I

The corresponding minimal deviation reads

Mostly these equivalent problems are treated as Muntz approximation
problems although only the approximation by exponential sums seems to
be of practical relevance.

For the rate of convergence of the minimal deviation PIlet: (A,), [a, h J),
fEe C[a, h J, as n -+x· Jackson-type theorems have been proved by several
authors. (See, e.g., M. v. Golitschek [8]. D. Leviatan [10J, 0.1. Newman
[13J for the approximation on [0, h]. and M. v. Golitschek [9J for the
approximation on [a, h]. a> 0.) In contrast to the usual approximation by
algebraic polynomials for the Muntz approximation on the interval [0, hJ
the order of approximation need not generally increase with the
smoothness of the function being approximated. For example, let us regard
the approximation off(x) = x by polynomials x d

', v E: N, d> 0, lid¢: N (i.e.,
i., = dv, v E: N) on [0, 1]. Replacing x by x lid it follows

P,J" (I'd), [0, IJ)=PIl(X 1d
, (v), [0, IJ), 11 EN.

The minimal deviation in approximating g(x) = X
lld by usual polynomials

on [0, 1J is of order 11 2.d (cf. G. Meinardus [11 J). Thus we have the
,lsymptotic relation

PIl(X, (wi), [0, IJ)=()(n 2/d) as n -+ x. (7 )
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But for the Muntz approximation on intervals [a, hJ with a>°the rate of
PI/U; (i.,), [a, hJ) depends on the smoothness of f just as in the case of
usual approximation by polynomials (cf. M. v. Golitschek [9J).

We are now interested in the question of what kind of functions
fE C[a, hJ can be approximated by Muntz polynomials from [[I/U,) with a
geometric rate of convergence, i.e.,

nE N, with q> I.

For the approximation on the interval [0, I J this problem has been regar­
ded in [14]. The results suggest that under the assumption
0< d ~ i., + I - i.,., v EN, on the sequence UJ the minimal deviation
PI/cr, (A,), [0, I J) tends to zero geometrically if and only if the
approximated functionl is the restriction of a "Muntz series"

,
liz) = I C"Zi" C" E IR, z E iC log' (8)

absolutely convergent in a certain domain around the branch point zero of
the Riemann surface of the logarithm. (Since the numbers i." are allowed to
be irrational the complex value z in (8) must be an element from the
Riemann surface of the logarithm denoted by iC log')

Again the situation is changed for the approximation on intervals [a, hJ
with a>O. Let us consider the approximation off(x)=x by polynomials
x'!1, vEN, d>O, I/d1N, on the interval [a, I]. By substituting x for X 1/d

we get

II 1/ II II 'I II:x - I a"x'!1' = X
lld - I a,x'

• ,,0 I [a. 11 " co 0 : rad I 1

and consequently

PI/(x, (vd), [a, IJ)=p,,(x 1id, (v), [ad, IJ), nE N.

nE N,

The function g(x) = X
lid is holomorphic in any circle not containing the

zero point. Thus by the theorem of S. N. Bernstein (cf. G. Meinardus [II J)
we find by taking account of the transformation of the interval [- I, I J
onto [a, I J that the geometric decrease

(
1+ lad) 'I

PI/(x, (vd), [a, I J) = 0 v,
l-~ad

occurs in contrast to the approximation on [0, 1J (d. (7)).
In the following we are mainly interested in the behaviour of the minimal

deviation Pl/U; U,), [a, hJ) in approximating a function f by Muntz
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polynomials on intervals [a, h J, a> 0, where the function f is assumed to
be holomorphic around the approximation interval [a, hl

2. A SPECIAL MONTZ ApPROXIMATION PROBLEM

M. Hasson has regarded (cf. [5, 6J) the special "Muntz problem" of the
approximation of functions by usual polynomials Pll in which for a fixed
kEN the coefficients of x k are zero, i.e.,

"
p,,(x) = L a,.x",

\'=0
,. ¥Ok

nE N.

We define for k, n EN, k:( n, fE C[a, hJ the minimal deviation

{ 'I " Ii }p~,kl(f; (v), [a, hJ):= min J(x)- L a,.x'il .
01', \':::"--C () ro,h1

\' ¥- k

(9)

First we look at the approximation of the function f(x) = x k by the other
power functions x', vEN, v =I k. This example reflects some peculiarities of
the general Muntz approximation problem.

The alternating properties of the Chebyshev polynomials of the first kind
T", n EN, lead to the following

LEMMA I. Let a, h, 0:( a < h, he given. Then relation

(k) k, _ k!(h-a)k
P,,(X,(~),[a,hJ)-1 ( 2a)[

2k r kl 1+--
" h-a

(10)

holds for all k, n EN, k:( n.

Proof Considering the polynomials T,,(2(x-a)/(h-a)-I) on [a,hJ
the assertion follows by the same arguments as for the special case
a=O, h= I in M. Hasson [5l

Since (cf. A. F. Timan [15, p. 226J)

k n2_(v_I)2 2kk! k (V_I)2
T(k'(I)-n - 2k n I k I

" -'.~l 2v-1 -n (2k)!'.~1 - -n- , n~ ~ ,

we get by (10)

Ikl(Xk (v) [0 hJ) = Ilk I . h
k
(2k) !-2k

p" , " '~Il-c:lr 4
k

n
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for I ~;;k ~ n. Using

(
2k-l)k k (k_I)2 k (V_I)2-- =0 1- - '::::0 1 - - <IP k '" n '

V= 1 \'= I

we find inequality

171

h
k
(2k)!n 2k<p(k)(Xk (vl [0 hJ),::::(~)khk(2k)!n_2k (II)
4 k ", , , '" 2k _ 14k '

n ~ k ~ I, for the minimal deviation P~,k)(Xk, (v), [0, hJ) in approximating
x k by the other power functions xv, vEN, v"# k, on the interval [0, bJ (cf.
also M. Hasson [5J). But moving the approximation interval away from
the origin the minimal deviation p ~,k l(x\ (v), [a, h J), a> 0, tends to zero
geometrically.

LEMMA 2. Let a, b, 0< a < h, and kEN he given. Then the asymptotic
relation

p~,k)(X\ (v), [a, hJ) = 2k!(J';;b)k n -k (~ ~1a)" (I + 0 G)) (12)

holds as n ---> CJJ.

Prool With transformation

equality

Z = ~(v + Ilv), v = Z+JZ2 - I, Z = x + iy, vEl[,

T,,(z) = ~(v" + llv")

is valid for the Chebyshev polynomials T", n EN. This follows by applying
the identity principle for holomorphic functions to relation

~(eimP + e - imp) = COS mp = T,,( COS qJ),

v =ei'i', Z=COS qJ, qJ E III Setting D<: = dldx we obtain with

T,,(x) = ~(v" + I/v"), Z=x> I, v=x+J7=!, (13 )

by differentiation

D T (,)=~(~ (V" +~)). D v=~ (nv"-l __n_) ._x_+-=P=X=2_ 1
\ ". dv 2 v" x 2 v" + 1 ~ 1

=~n(v"- vi,,) T
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and further for k ~ II
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1! I \ ( I . I.

D k l' (x) = - n' ( r" + (- I )' -) ~)
\ n . 2 \ . vfl

// y2 ~ I;
v·

, II! I )
+ " -n'(r"+(~.I)'- F,(x)

L 2 r"
,'I·· /

with functions F" I' = I(I) k - I,

,_ (1 I k 1 I )F,(x) - F,. ;-:;--1' D,. ~1 ,..., D x !, '

yC- yx-- yx--I

( 14)

not depending on n EN. Hence combining (13) and (14) we find setting
Ie = 1+ 2a/(h - a) > I, 1': = I..: +v~ for any fixed kEN the asymptotic
relation

I ( I )' ( (I \)1':,"(1..:)=_ /,2 n'r" 1+0 -)
2 ! ,. - I n /

y"

With (10) it follows that

as n ->x.

k!(h-a)'( /1..:
2
_1)' '/, ,,(/ 1+ 0 (;;1))

P(kl(X' (1') [a h])= \, n ' .
11 . , ~ , 2k I

as n ->X. In view of

__ J
.. , ~'h

yl..:--I =-h- y a,
-a

we have established relation (12).

Remark I. Since

-,- ,/h+,/a
I' = I..: + Y I..:~ - I = v ;_ v !

y"h-ya

we see from (12) that for fixed length h ~ a of the interval [a, h] the
geometric rate of the minimal deviation p;,kl(X', (1'), [a, h]) increases with
the distance of the interval from the zero point.

A geometric rate of the minimal deviation p;,k IU (I'), [a, h]), a> 0, also
occurs for all functions f holomorphic around the approximation interval
[a, h]. This is stated in
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THEOREM 1. Let 0< a < hand k El"u he given. Let E( (h ~ a )/2 + I()

denote the ellipse with foci a, h and great hall axis ollength (h - a )/2 + 1(,

(15 )

y=Jc;a +I(Y -1 Sini/J,i/JE[0,2Jr)}

where I( is a numher 0< I( :::; a. Supposc the function f is holomorphic in a
region containing the ellipse E( (h - a )/2 + I(), 0< 1(:::; a, and its interior.
Further let f(z) be real for real z. Then inequality

holds with a constant A not depending on n.

Prool Let

. f. (2(X-a))
!(x)= I aJ,. -I

h-a
\' =() ,

nE N, ( 16)

( 17)

be the Chebyshev expansion oflon the interval [a, h]. By assumption f is
holomorphic on an ellipse E( (h - a )/2 + I( I) (cf. (15)) and its interior with
/.; 1 = I( + c:, I: > 0, small enough. By applying transformation

_ 2(x-a)
X= -I,

h-a
xE[a,h],.tE[-I,I],

mapping the interval [a, h] onto [- 1, 1] and the point a -- I(] on
- (I + 21( I/(b - a)) we obtain just as in the proof of the Bernstein theorem
(cf. G. Meinardus [11, p. 91]) the bound

21(
ql:= 1+ __1

h-a'

2B(I(] )
la '< _

,·1-....: R\' '
]

\' EN, where R]:= ql +~q~-I, ( 18)

The inequality of S. N. Bernstein (cf. [II, p. 92]) yields

I
(

2(Z-a)
T, h -a (

h-a )
\' EN, Z E E -2- + 1(" '
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for any K2 > 0 with R 2 = q2 + J q~ - I, q2 = 1+ 2K 2/(h - a). Now we choose
a number K2 , K] > K2 > K. Since R) > R2 it follows by (18) that

.'~ I (2(::-a) )1If(::)I:( ,~o la,,1 T" h-a - I I

, (Ro)'
< 2B( K 1 ) ,~o R~ < x

(
h-a )

for::E E .~+ 1\2 (19)

and the Chebyshev expansion (17) is uniformly convergent on the ellipse
E((b-al/2+1\2l and its interior. Hence

lim III- Pn II L((h 11)2 + /(2) = 0
n --+ -r

with the partial sums

" (2(::-a) ') "
p,,(::) = I a" T" h _ a-I = I cx~nl ::',

l'=() . \.~()

of (17 l and consequently

nE N,

(20)

(21 )

IIp,,IIIo'llh 11);2+/(,):( III-PnIILI(!> 11];2+/(,)+ IIIillo((/) 11);2+/(,)

:( A] IIIII/(ih 11)2 t h2!

with a constant A] > O.
Let us first assume a> K 2 > 1\. The transformation

_ 2(::-a)
::= -I

h-a

maps

(
21\1 ') (2a )a- K 2 resp. 0 on - 1+--~ resp. - 1+-h-
h-a -a

and thus the ellipses

(22)

(h-a) (h + a) _( 21\1 ) _ ( 2a)
E -2-+K2 resp.E -2- ontoE\I+

h
_-

a
res p.E\I+

h
_ a ,

Here E( (J), 1 < (J, denotes the ellipse with foci - I, 1 and great half axis of
length (J. Setting

2a
qo:= 1+-h-'

-a
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we see that transformation

maps
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(23)

{v E iC: Ivi = I }

{VEC: Ivi = Ro:= Qo+Jq6-1}

onto [ - I, I].

- ( 2a )onto E 1+-- ,
h-a

_ ( 2/(> )onto E 1+--- .
h-a

(24)

Moreover by (23) we have given a conformal mapping between the region
{v E C: Ivl > R2 } and the exterior ext E( I + 2/(2/(b - a)) of the ellipse
E(I + 2K 2/(b - a)). Hence setting v: = u/R2 by

there is given a mapping between

{VEC: Ivl = I}

and a conformal mapping between

and

and

E(l+ 2K 2
)

b-a

_ ( 2a)E I+
h

_
a

{VEC: Ivl > I} and _ ( 2/(1 )
ext E I + b _ -a .

We remember that a> K2 or Ro> R2 . By a generalisation of the inequality
of S. N. Bernstein (cf. D. Gaier [7, S. 33]) we obtain with (22), taking
account of the above transformations, that

( R )"Ip"(.:;)I~llp,,II"llh a)!2+>o:~) R: '

( R )"< A2 R: '
11 EN, (25)

is valid for all .:; E E( (b + a )/2). With aid of the inequality of W. A. Markoff
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(cf. G. Meinardus [II J) applied to the interval [0, h + a J comprised in the
ellipse E((h + a)j2) it follows

and thus

fl EN, (26)

for the kth coefficients cx~" of PI/ (cf. (21)), k :( fl, k fixed, with a constant A,
not depending on fl.

Now let ql/ E fll/\span(x") be the polynomials which best approximate
the function x" on [a, h], i.e.,

With the partial sumspl/' flEN (cf. (21)), we have

p~," 'U (v), [a, hJ):( 111- PI/ + CX~I) x" - cx~" qn II [o.n I

:( III-PI/II [II.n] + Icx~')1 p\"I(X", (v), [a, hJ).

From (18) and (21) we see that for all x E [a, hJ the bound

• f~ I (2(X-a) )1
If(X)-PI/(x)I:(,~~+,la,1 T,. h_a- 1

(27)

R '] , fl EN, (28)
\' 11+ I

is correct. Now with qo = I + 2aj(b - a)

~ fi+fi
R o= qo + V qo - 1 = r; rvb-va

Lemma 1 yields for fixed kEN

p;,k)(x", (v), [a, bJ):( Cc fl "Ro 1/,

Using (26) we get

fl EN.

fl EN.

(29)

(30)
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In view of I( 1 > "'2 > I( or R I > R 2 we deduce from (27), (28), and (30) that

p~,kl(f; (v), [a, bJ)~ BnkR l ", nE N, (31 )

Setting q:=1+21(/(b-a), R:= q+)q2_1 it follows by 1(,>1( that

R2 > R and thus

(R)"lim nk
- =0,

!/-l- .1_ R2

This combined with (31) yields for fixed kEN inequality

nE N,

where the constant A is not depending on n. Since

, I,
( / b - a + I( + I I()~

R= v v
b-a

the assertion of the theorem is proved for I( < a,
Now let us take I( = a, As before we obtain with suitable

1(1,1(2: 1(1 > 1(2 > a, inequality (19) and thus

lim Ilf-p"IIE((h <11/2+0:2)=0
n - 'I.

with the partial sums p", n EN (cf. (21)),

"
P ( ~)= '\ ,NI"I~"n ... L.... .A\, ....

\,--,-,-0

(32)

The circle K" = {z E C: Izi < IT} with IT: = 1(2 - a is contained in the interior
of the ellipse E((b - a)/2 + 1(2) and by Cauchy's integral formula we find
with the power series

.I~

f(z) = I C,oZ'

\' 0

off relation

k ' f'( c) - ( " )
/ 'lki(O)_ (kl(O)=_' f, ' . p" <, d~, p" 2 ' ;k+1 (

1[/ !.'I~" ~

and

/ 'lkl(O) - Ikl(O) II f'- II,
I
. 1")1 -' p" <:. p" EI(" <11/2 + h21 (33)

( k - :J. k - k! "" IT k



178

Hence by (32) for fixed kEN
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or l:xn ~ A 4 for all n EN, n? k, with a constant A 4 > O. Now by (27), (28),
and (29) we get immediately for fixed kEN the bound

p~,k l(f (v), [a, hJ) ~ A Ro ",

nE N,

=A (J~+J;) "
vh-va

and the assertion is proved also for K = a.

Remark 2. For fixed a, h the geometric factor

(34)

in (16) is a strictly monotonically increasing function of K, 0 ~ K ~ a, with
- I,.~ .~

H(O)=I and H(a)=(Jh+.Ja)/(.Jh-Ja). For the special case K=a
inequality (16) is given in M. Hasson [6].

By (16) for functions f holomorphic only in ellipses E((b-a)/2+K),
with 0 < K ~ a, that are ellipses not containing the "singular point" zero in
the interior, the minimal deviation p~,kl(j: (v), [a, h]), a>O, tends to zero
geometrically with the same factor (34) as the minimal deviation
p,,(j: (v), [a, hJ ) in approximating with all polynomials from JJno

Moreover since

p,,(j; (v), [a, hJ)~p\kl(j; (v), [a, hJ)

the converse of Theorem I follows directly from the converse theorem of S.
N. Bernstein for the approximation by all algebraic polynomials (cf. G.
Meinardus [11, p. 92 J).

The situation is changed if the function f is holomorphic in a region con­
taining an ellipse E((h-a)/2+K) with K>a. The difference between our
special Muntz problem and the usual approximation by polynomials in this
case is elucidated by

THEOREM 2. Let a, h, 0 < a < h, and kEN he given. Let the function f he
holomorphic on the ellipse E( (h - a )/2 + K) (cf (15)) and the interior where K
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(35)nE N.

satisfies K> a. Suppose f(z) is real for real z. Il in addition pkl(O) = 0 then
with a constant A

p~,kl(f, (v), [a, h]):;:; A (Jh-ah+:a+V~):'.) "

In return for afunctionlE C[a, h] let inequality (35) hold with K, K> a >0.
Then there exists a function] holomorphic in the interior ol E( (h - a )/2 + K)
whose restriction to the interval [a, h] coincides withf M oreoverl(k 1(0) = o.

Proof To prove the first part of the theorem we proceed just as in
the proof of Theorem I. Taking as before KI , K:'.; KI > K:'. > a and setting

again ql=I+2K 1/(h-a), R1=ql+jqi-l, q:'.=1+2K:'./(h-a), R:'.=

q:'. + j q~ ~ I we obtain from (17), (18), and (21) inequality

(36)

for all zEE((h-a)/2+KJ. Since K2>a the circle Krr={ZEC:
Izi < (J}, (J: = K2 - a, is contained in E( (h - a )/2 + K2) and as in the proof
of Theorem 1 we get with the Taylor expansion

f

f(z)= L C,.z\
\'=()

k, n EN; k:;:; n, k fixed, (37)

of/by (33) and (36) using Ck=pkl(O)/kl=O the bound

I
("II <: Ilf-Pnllt;((h UI/:'.+"'I<:B (R:'.)"

:.t. k '" k + I '" :'. R '(J I

for the coefficients :.t.~') of Pn. Combining (27), (28), (29), and (37) we find

( R )"P(kl(f· (v) [a h])<:C R-n+B ~ R"
n .' , ,- " 1 1 3 R, 0 (38)

with R()=qo+Jq~-I, qo= I +2a/(h~a). Now we can choose a number
K:'., K 1 > K> K:'. > a, K2 small enough such that with

2K J( 2K):'. (/h-a+K+ 1;)2R = 1+--+ I +-- ~ I = _v-'--- V-'-----_
h-a h-a h-a
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inequality
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is satisfied. Thus (35) follows from (38). The first assertion of the converse
statement is proved in the same way as the corresponding assertion for the
usual approximation by polynomials without any gap (cf. G. Meinardus
[II, p. 92]). With the polynomials ql/ E Ill/\span(xk

) satisfying

p~,kIU;(v),[a,h])=llf-ql/ [a.1>1'

we set hn : = q(j, hl/: = ql/ - qll I: n = I, 2, .... The series

nE N,

is uniformly convergent in [a, h]. Moreover it follows as in [II] that the
function

,
](::.) = 1:: hll (::.)

n-O

(39)

is uniformly convergent in any ellipse E( (h - a )/2 + 1\ I) with 1\ I' 0 < 1\ 1 < 1\,

i.e., f is the restriction of the function 1 holomorphic in the interior of
E((h-a)/2+1\). Remembering h~,k)(O)=O, nEN, by applying the
Weierstrass theorem to the series (39) we finally obtain

,
!(kl(O) = 1:: h;,k)(O) = o.

11 (I

3. THE ApPROXIMATION OF HOLOMORPHIC FUNCTIONS

BY MUNTZ POLYNOMIALS

We consider first the approximation of the power function fix) = x',
J. ~ 0 fixed, by help of polynomials from Ill/().,) on [a, h] with a> O. The
following theorem (cf. Borosh, Chui, and Smith [3]) says that the minimal
deviation PI/(x\ ().,), [a, h]), a ~ 0, is the smaller the closer the numbers
).,., v = O( 1 ) n, are to the number )..

THEOREM 3. Let n EN, ). ~ 0, a, h, 0 ~ a < h, he Riven. The minimal
deviation

PI/(x', ().,), [a, h]) (40)
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with ralues in V = O( 1) n,

181

-1 ~ q ~ n,

is a strictry monotonically increasing function of the values i.'1 + 1, ... , A" and a
strictly monotonically decreasing function of i·o,···, iT

Prool The proof is just the same as the proof of Theorem 2 in Borosh,
Chui, and Smith [3] where only the case i., E N, v = O( 1) n, has been con­
sidered.

Estimates for the minimal deviation (40) can be obtained by comparing
with the values

P~lk)(X;\(I,v),[a,b])=m,inllx;ok-I (;("X;o' 1'>0.
I \' =() fa.hl

\' oI:-k

Since

1
11 I' 11

11

II

,,'v! v
I L:x,,·X" = L:X"X ,
, \~o I ra.h] I ,~o r,i.h C']

we find from (12) for fixed kEN, 0 < I' < XJ, the inequality

(41 )

A(k)(F+~) 11 (k);ok '" B(k)(F+~) 11-k-' r-- r-- ~PI1 (x ,(/\),[a,b])~-k'- [L"; r-- ,(42)
n ..../bi-Jai n ybi-Ja)

n EN, with constants A(k), B(k) not depending on n. We notice that given
a, b, 0 < a < b, the factor

r;; + Ja i

g(r' ):= v , r--

Jbi-Ja i

is strictly monotonically decreasing in ~', )' > O. This follows from

, F ~(loga-logb)
g (I') = r-- < O.

( r:-::b" . "):'Y . -va'
More generally we get from (42) by aid of Theorem 3 the following

THEOREM 4. Let kEN, a, b, 0 < a < b, be given. Suppose the sequence
(i.,) (ct: (2)) satisfies O~d~i"+I-),,~D<x, vEN. Then for the
minimal deviation

p:,k )(x;', (i.,), [a, bJ): = m,~n { X'" - I :X,,,,';'' II }
\' = 0 ra.hl
\' oF- k
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A(Jh
d

+p) "<: Ik J( i., (' ) [ h]) B(J/;D +p) "(43
k ~h' ~I "p" X , l" a, .:(- . p )n ,/' -, / a' n r

!hf) f)
v v v' - a

holds feJr all n E ~ with r: = Uk!D] and constants A, B not depending on n.
(Here [x] for x E IR1 denotes the largest natural numher k, k:( x.)

Prool Setting with k, k :( n,

r:= Uk!D],

and using

!.k ! I' :( !.k + DJ.1,

!.k I' ~ !.k - DJ.1,

we deduce from Theorem 3 that

J.1= l(l)n-k,

fl = l( 1) r,

p~)(x''. (}.,), [a, h]):( p~:~, k(X", ()'k + D( v - r j), [a, h])

=p~:~, k(x,IJ+X,(vD+:x),[a,h]).
(44)

By p~,rL k(X",Uk+D(v-r)), [a,h]) we have denoted the minimal
deviation in approximating f(x) = x" by the functions Xik + D(v- 'I,

I' = O( 1) n + r - k, I' =1= r. Since

II
f :X"xi., +, ,I . :( h'
,~O I [u./r]

it follows with (42) and (44) that

f :x,xi., II
,,0 II [a./rl

Taking a constant B satisfying

n r+k

the bound

r t II.

nEN,

nE N,
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nE N,

is established. To prove the lower bound in (43) we assume d> 0 since for
d = 0 the bound is trivially satisfied. Putting f3: = )'k - kd we get by
Theorem 3

p~,k)(Xi" U,,), [a, bJ) ~ p~,k I(X
i
" ()ok + d( v - k)), [a, bJ)

=p~,kl(XkJ+/J, (dv+f3), [a,hJ)

and in view of

II f rJ."x;',+/JII ~a/i II f rJ."xi'll
"~O [lI.h] '''~O [lI.hl

the bound (42) leads to the left inequality of (43),

1
(

hJhJ + Ci)-"(k) i., . >: fJ y () y a
p" (x ,(A,,), [a,hJL--a A(k)k hJ Ci

n yhJ_yaJ

1 (.fl?+fi?)"">:A -
/' n k .fl?-fi? '

and the theorem is proved.
Given a sequence (A,,), O~d~)o'+I-;',~D<CfJ, vEN, and a number

J. ~ 0 with

min IA-A"I =: 6>0,
VE N

then by Theorem 4 for the minimal deviation p"(x i
,, (J,,,), [a, hJ) in

approximating the function f(x) = x" by polynomials from Jl,,().,,) on
[a, h J, a> 0, inequality

A (J/?+P) ";. B (JhD+P) "
nk J/?-p ~p,,(x ,U,,), [a,bJ)~nr JhD-P nEN,

(45)

holds with r:=[A/DJ and b:= min(d,6). In [IJ the upper bound

nE N,

has been given.
But also more generally for the approximation on intervals [a, b J with

a> 0 (in contrast to the approximation on [0, bJ) the quantity
P"U: (}.,), [a, hJ) has a geometric decrease for all functions hoiomorphic in

M04~ 2-7
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a sufficiently large region around the approximation interval [a, h]. This is
stated in

THEOREM 5. Let a, h, 0 < a < h, he given and let the sequence (.·{v) satisf}'
0< d ~ )'v + I - )". ~ D < x, V EN. Suppose the function f is holomorphic in
the interior of K R and continuous on K R' K R: = {z E C: Izl ~ R} where R is a
number R > b. Further letf(z) he real for real z. Then for any q,

{( R)d !fl5 + J aD}
O<q<(J:= min h 'p_p ,

there exists a constant A = A(q) not depending on n such that

holds for all n EN.

Proof For the coefficients c,., v EN, of the Taylor expansion

f(z)= I cvz'
\,-,---0

off we get by Cauchy's integral formula the bound

1

1' flO IIcvl= -2.J." ;:v+ld~,
1[1 lei ~ R C,

VE N,
M

:<­
"" R'"

with M:= maxlcl~R{lf(z)I}.For any mE N inequality

",

P[m!d1U; ().,), [a, h])~ I le;l P[m;d1(x), (J. v), [a, h])
i=O

,.
+ I Ie) Ih)

;.=m + I

is valid. We seek for upper bounds for the minimal deviations

(46)

(47)

(48)

(49)

P[m!d](X', p.J, [a, h]), (50)

If J. ~ Ao then the value (50) is less or equal to the minimal deviation in
approximating g(x) = x)' by the power functions x), + D,oo., Xi + D( ["'Id] [)./d1),
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n E ~J,

This follows from Theorem 3 since ;'k :S; A:S; ;'k + I' kEN, implies ;. ~ kd and
[;.;d] ~ k. Hence using (41 ) we find

Prmld](Xi , (A,), [a,h]):S;Pt~'~/dl ri/d](X\(A+vD), [a,h])

:S;h i PV;';ld] [iid] (1, (vD), [a, h]) (51)

= hi Pt~':ld] ri;d] (l, (v), [aD, hD])

P;,"'(1, «'I, [a, fiJI ~ I ( 1~)
Til 1+ R

/' - a

for anya,{3, O:s;a<fi. Using (13) we obtain with x=I+2a/(fi-a),

v = x + J?"=l the bound

T (1 +_2_) =~ (VII +~.) >~ V" =~ (fi+~)"
II fi - a 2 V" 2 2 fi ~,;; ,

and in view of (51) we get

rmld] + [/.1<1]

nE N, (52 )

for ;., ;'0:S; A:S; m. For the finitely many AEN, ;.:S; Ao, Theorem 3 yields by
applying

II
' ).j - f a"xi

" t I'f) II :S; h;" II Xl;,

I' ~ () ra.!>]

inequality

The function l1(x) = Xli iol:D is the restriction of a function holomorphic in
any ellipse around the interval [a, b] provided that the ellipse does not
contain the zero point Taking account of the transformation of [aD, bD]

onto [ - I, I] a result of S. N. Bernstein (cf. [2]) says that inequality

l:S;nEF~,

IS valid with K = (JhD + p)/(j!1i - J7l5) and a constant B not
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depending on n. Hence by (53) there exists a constant C such that for
mE N, d~m,

. ' (lhlJ+JaD)-rllld] [ml iOD

p[m;dJ(x\(v),[a,h])~Ch;O Vr-;:- ~ . -
ihD~ laD d

V V

for all ;. E N, ;. < ,1,0' Combining (48), (49), (52), and (54) we obtain

(54)

Prlll;dJU; (A,), [a, h])

, rio] ,[ml;·O;D(,fi7'+.laD) [III,d]
~ CMh'O L R ; - v V

i~O d .J0-#

+ 2M f ((~)d) ;Jd(~ +~) [i;dJ rmdl + M f (~) ,
,.~r'.ol+I .jhD-va i~m+I h

(
.J0+#),-rm;dJ.[mliOilJ . ((R)d)-rmdl

~kl fLi5 ~ - +k,m (J rm;dl+k' -
v hD - J aD d - 3 h

with

and constants k I' k 2 , k 3 not depending on mEN. Thus to any number
q < (J there exists a constant A = A (q) such that (47) holds as stated.

The upper bound (47) for the minimal deviation P,Jf, ().,), [a, b])
depends on the value (J (cf. (46)). For functions f holomorphic in a suf­
ficiently large region, i.e.,

(55)

the geometric factor (J is bounded (from above) by the right side of (55)
which doesn't depend on f and the rate of convergence increases with the
distance of the interval [a, b] from the origin.

4. A CONVERSE THEOREM

Regarding again inequality (47) with q given in (46) the bound in
Theorem 5 suggests that for fixed interval [a, h], a> 0, generally even for
entire functions f the geometric rate of PnU; U,), [a, b]) is bounded by a
number depending only on the distance of the interval [a, b] from the zero
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point and on the difference h - a. More precisely the following
generalisation of the converse result of Theorem 2 holds.

THEOREM 6. Let a, h, 0 < a < h, he given and let the sequence (Jc,.) satisfy
O<d~)'I+l-).,,~D<x, VEN. Suppose, for afunctionfEC[a,h], the
inequality

holds with constants A and r, where

nE N,

. 2eh D JbD +P
r>K·=-;n·JbD_p·

Then there exists a Muntz series

'x

./(z) = L c"z)',
,,~o

(56)

absolutely convergent in KR := {ZEC 1og : Izi <R}, with R=b· (r/K)IID,
whose restriction to the interval [a, b] coincides with the given function!

Prool For convenience we apply a transformation to the
approximation problem. Setting

.X-:= x/h,

by assumption equivalently to

F(.x-) = f( h.x-) = f(x) (57)

Il f(X)- f a~")x;'11 ~Ar-",
I' ~ 0 [a.h]

inequality

I,!F(X)- f a~''')h;\X;'!1 ~Ar--"
,,~o [a/h. I]

holds. Putting a: = a/h, 0 < a < I, this means that

nE N,

nE N,

p,JF, ()'I)' [a, 1]):(Ar ", nE N.

With polynomials q"EIl,,(ic.) satisfying IIF-q"il[~.l]~Ar-", nEN, we
define P,,: = q" - q,,_ 1 ; n = 1,2,... ; Po: = qo. Then the series

x x

F(·x-)=qo(·x-)+ L (q"(.x-)-q,, I(X))= L p,,(.x-)
n=1 11=0



188 GEORG STILL

is uniformly convergent in [x, 1J and moreover it follows

nEN, (58)

with a constant B. For the polynomials

11

P (;:;).- " a(I1);:;""Efl (; )
1/ .... • - ~ \" - n /~ \'

r~()

(59)

clearly

11

Ipl1(ZlI ~ I la~,I1IIIW' (60)
\' -= 0

is correct where z is an element of the Riemann surface of the logarithm
iC log ' Since

we have

(61)

for all k,nEN, k~n. By Theorem 3 the value p~kl(X:i" UJ, [a, 1]) is not
smaller than the minimal deviation in approximating g(x) = .x"" by the
functions .x i , + (, kid, V = O( 1) n, v =f. k. Consequently

p~lkl(.X;·', (A r ), [a, l]))op~lk)(.xi" (;'k+(v-k)d), [x, IJ)

)ox;, kd p~lkl(Xdk, (vd), [a, 1]) (62)

= x;, kd p~lki(.Xk, (v), [ad, 1]).

We remember (10),

(63)
k' (1 _Xd)k

p~lk)(.Xk, (v), [ad, I]) = I . ( 2:xd ) I'
2k Tiki 1+--

11 I-xd
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for k, n E N, k ~ n. Applying the inequality of W. A. Markoff (cf. [11 J) to
Til on the interval [ -q, qJ, q> 1, we find the bound

From (13) it follows with q > 1

II Tn II I-q.q] = Tn(q) ~ (q +J q2 - 1)"

for all n EN. Combining

n (n + k) nk
-=: I (n 2- v

2
) n

2k
nil__ = v-o ~--~-<e"

n+k n-k (2k)! (2k)! nl

with (63), (64), and (65) we get

for k ~ 11

(64)

(65)

and

(1 - ad)k l
p~k)(xk, (v), [ad, 1J)~-----===e-­

22k e"(q + Jqcl)n

for all k, n EN, k ~ n with q = 1 + 2'Y. d
/( 1 - ct d

). Since

ITJ 1+#
q+vq -1=1-#

we find

(1 + ctdl (1 + ~)-II
P(k)(X k (v) [ct d lJ)>- V(/.

11 ' , , :;..--" 22k n r::d
e I-va

and in view of (62) using 0 < a < 1 finally

. tl.;k-kd(2:X
d)k(I+#)-"

p~,k)(x""(AJ,[a,IJ)~ 22k e" l-P
~ a

DII (1 +#)-11
2n e" 1-#

for all k, n EN, k ~ n. Hence by (58) and (61) with

a
where a =h

(cf. (56)) inequality
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is valid for the coefficients a1"1, k = O( 1) n, of pII' n E N (cf. (59)). Thus (60)
implies

nE N, (66)

~B(n+ 1)(1-1:)",

for all zEiC 1og , Iii ~((rIK)(I-t:))ID where t: is any number 1:>0 satisfying
(r/K)(I-F.)~ 1. From

f I,

1£(:)1 ~ I IPn(z)1 ~ B I (n + 1)(1 -/;)" < CD
11=0

we deduce that the series

n-O

,
£(z) = I p,,(i)

1l=0

(67)

is uniformly conver~ent for all zEiC log , Iii ~((rIK)(I-I:))I/D. Moreover
expansion (67) of F as an absolutely convergent double sum allows a
change of summation which leads to a representation

(68)

v = 0

absolutely convergent for i EiCing, Iz[ ~ ((r/K)( I - 1:)) lif). Since t: > 0 may be
chosen arbitrarily small the series (68) is absolutely convergent in
Iii < (r/K)l/D. Taking account of transformation (57) by setting

z=hZ,

we have shown that the series

l(z)= Fun

is absolutely convergent for all zEiC 10g ' Izi <b· (r/K)I!D. Furthermore the
restriction of the function I to the interval [a, bJ is just the given function
f(x)=F(x/b).
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We notice that the estimates in the proofs of the preceding Theorem 5
and Theorem 6 have led to assertions which describe the situation
qualitatively. They don't give sharp results in general.

5. LINEAR ApPROXIMATION BY EXPONENTIAL SUMS

In Section I by help of transformation (4) it has been shown that
"M untz problems" are equivalent to corresponding problems of
approximation by exponential sums. Now we summarize the results abo'le
in terms of the (linear) approximation by exponential sums.

By transformation (4) intervals [0, b] are mapped onto infinite intervals
[:x, x] with :x = -log b and intervals [a, b], a> 0, correspond to finite
intervals [IX, fJ], Y. = -log b, fJ = -log a. Moreover taking the continuation
of (4) to complex variables,

=== e "\

S = ~log Z,

S=l+iT,

Z E iClog,

we see that a circle KR := {ZE iCIog: [zi ~ R}, R >0, corresponds to a right
half plane H R : = {s E iC: re s ~ -log R }. Hence the results in [14] suggest
that a geometric rate of the minimal deviation bnU; (Av), [IX, x]) (cf. (6))
in approximating a function F by exponential sums from An(}'v) (d. (5))
where the fixed sequence (AI') satisfies 0< d ~ I., + I - I..., v EN, occurs
exactly for those functions F which are restrictions of Dirichlet series

-x

F(s) = I c,_ e i",

\'=0

convergent in certain right half planes HR' Whereas for the approximation
on finite intervals [IX, fJ] the minimal deviation b ll ( F, ()o,,), [IX, fJ]) for the
exponential approximation where the numbers AI" v EN, satisfy
I., + I - AI' ~ D < CfJ tends to zero geometrically for all functions F
holomorphic in certain regions around the interval [IX, fJl We give an

EXAMPLE. Let us consider the approximation of the function
F(t) = 1/(1 + l) by exponential sums of the form (A" = Y.V, v EN)

/l
d,,(t) = I Q"e m (69)

v=o

on the interval [0, x] resp. [0, 1], where r:J. is a fixed number r:J. > 0. This
function F is holomorphic in the half plane re s> -1 but not representable
as a Dirichlet series. We choose Y. =~. The computed minimal deviations
()/l[0,:xJ]:= ()/l(F, (v/2), [0, x]) resp. ()/l[0, 1]:= b/l(F, (v/2), [0,1]) are
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TABLE I

n 6,,[0, oc> J 6,,[0, I J p,,[O,IJ

2 4.5' 10 13 10 1 7J 10 1

3 3.4·10 3.9 . 10 4 IT 10- '
4 3.1' 10 4.7 . 10 j 2.2 10 4

5 2.8' 10 5.4 10 6 17 10 j

6 2.6' 10
-, 6.6 . 10 7 6.4· 10 6

listed in Table I for n = 2, ... , 6. The last column of Table I gives as com­
parison the minimal deviations Pn[O, 1]:= Pn(F, (v), [0, IJ) for the
approximation of F(x) = 1/(1 + x) by algebraic polynomials on the interval
[0, I].

Table II contains the ratios of consecutive minimal deviations.
The ratios for the exponential approximation on [0, 00 J (first column,

Table II) indicate that a geometric convergence of 6n [0, 00 J cannot be
expected. For the approximation on [0, I J a geometric rate occurs in the
exponential case as in the polynomial case. In fact the theorem of S. N.
Bernstein (cf. [II J) leads to the asymptotic relation

I
lim sUP(Pn[O, I J)Im = 110'

n->CI_ 3+ y 10
3 + jiO~6.16,

I
lim sup(6n[0, IJ)I/n=­

K

and with some transformation arguments we find
,! ,

. h k = I + yI e + v e + 2yI e ~ 7 86
WIt , ~ ..

yle-I

The optimal choice of rx for the approximation of F( t) = 1/( I + t) on [0, 1J
by sums of the form (69) is the number rxo = log( (1 + J5 )/2) ~ 0.4812 with
an asymptotic rate

lim sup(6 n (F, (rxov), [0, I J))l/n =~,
Ko

. J (1 + J5 )/2 + 1
K o = / ~ 8.35.

v(1 +J5)/2-1

TABLE II

6,,[0,0c> ] <1,,[0, I J p,,[O, 1J
n

<I", 1[0, CD] 6" f I[0. I] p".I[O.I]

2 1.30 8.46 5.62
3 1.11 8.30 5.91
4 1.10 8.28 5.95

5 1.08 8.18 5.96
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