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The problem of the approximation of functions by Miintz polynomials on an
interval [a,b] with ¢>0 is considered. It is shown that, in contrast to the
behaviour in approximating on an interval [0, 4], for the approximation of a
function f by Miintz polynomials on [, /], a>0, the minimal deviation tends to
zero with a geometric rate for all functions f holomorphic in a sufficiently large
region around the interval [a. b]. Also a converse theorem is given. The results are
interpreted in the context of the equivalent (linear) problem of the approximation
of functions by exponential sums. 4" 1985 Academic Press. Inc.

1. INTRODUCTION

Let C[a, b] denote the space of real valued continuous functions on
[a, b], a < b, endowed with the uniform norm

1/ apy = max{|f(x)]: xe[a.b]},  feCla b]

We consider the approximation of functions fe C[a, b], a>0, by Miintz
polynomials from I7,(4,),

,(4+,):= { Y a‘,x”"‘:a\,eR}, neN, (1)

v=0

on the interval [a, 5], where (1,) denotes a fixed sequence of real numbers
AnveN:
0 ig<i < e, lim 4, = 0. (2)

Voo

The classical Miintz theorem (cf. [12]) states that the system of
polynomials from [7,(4,) is dense in C[0, 1] iff 37, (1/4,)=0oc and
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2y=0. The corresponding result for the approximation on an interval
(a. p] with « >0 has been proved independently by Clarkson and Erdos
(cf. [4]) and L. Schwartz (cf. [16]). Given fe ([a, h] we are interested in

the asymptotic behaviour of the minimal deviation p ). [a, b]),
1A [a, b)) = min| | f - /7,,\;[“_,,]:p,,e[l,,()h\)} (3)
as n—- x.
Looking at the transformation
x=c¢ re —logh, —logal. Flry=f(e ')
t= —logx, xe[a b], flx)= F(—log x), a

we see that the problem of the approximation of a function f(x)e Cla, b},
0<a<b< o, by Mintz polynomials from /7,(4,) on [a b] 1s equivalent
to the problcm of the approximation of F(7)e C[x, fi] with a= —log b,
p=—logaon [z, f] by help of exponential sums from A,(~,),

AL {Z ae u\.eR}. neN. (5)

The corresponding minimal deviation reads
(F. (20 [ 1) o= min{ [ F —d,, [, 4y d, € 4,04} (6)

Mostly these equivalent problems are treated as Miintz approximation
problems although only the approximation by exponential sums seems to
be of practical relevance.

For the rate of convergence of the minimal deviation p,(f, (4,) [4, b]),
feCla, b], as n —» oo Jackson-type theorems have been proved by several
authors. (See, e.g., M. v. Golitschek [8]. D. Leviatan [10], D. J. Newman
[13] for the approximation on [0, 4], and M. v. Golitschek [9] for the
approximation on [«. h], «>0.) In contrast to the usual approximation by
algebraic polynomials for the Mintz approximation on the interval [0, 5]
the order of approximation need not generally increase with the
smoothness of the function being approximated. For example, let us regard
the approximation of f(x)= x by polynomials x* ve N, d>0. 1/d¢ N (ie.,
s,=dv, veN) on [0, 1]. Replacing x by x"“ it follows

palx, (vd), [0, 1]y = p "9 (v), [0, 17), neN.

The minimal deviation in approximating g(x)=x"* by usual polynomials
on [0, 1] is of order n *“ (cf. G. Meinardus [11]). Thus we have the
asymptotic relation

pax, (vd), [O, 1Y =0 > ASH — £ (7)
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But for the Miintz approximation on intervals [«, b] with a > 0 the rate of
.1 (4,), [a, b]) depends on the smoothness of f just as in the case of
usual approximation by polynomials (cf. M. v. Golitschek [9]).

We are now interested in the question of what kind of functions
fe Cla, b] can be approximated by Miintz polynomials from /7,(4,) with a
geometric rate of convergence, i.e.,

pf(A), [a.b])<Aq ", ne N, with g > 1.

For the approximation on the interval [0, 1] this problem has been regar-
ded in [14]. The results suggest that under the assumption
0<d<i,.;—4,veN, on the sequence (4,) the minimal deviation
0.0/ (4,),[0,1]) tends to zero geometrically if and only if the
approximated function fis the restriction of a “Miintz series”

F)=Y ¢z, c,eRzeCy,. (8)

v=10

absolutely convergent in a certain domain around the branch point zero of
the Riemann surface of the logarithm. (Since the numbers 4, are allowed to
be irrational the complex value z in (8) must be an element from the
Riemann surface of the logarithm denoted by C,,.)

Again the situation is changed for the approximation on intervals [a, b]
with @ > 0. Let us consider the approximation of f(x)= x by polynomials
x* veN, d>0,1/d¢ N, on the interval [a, 1]. By substituting x for x'
we get

[a17

n
!x_ Z U‘,,\”dr
v 0

"
x=N ax
y o= ()

lat1]

and consequently

pux, (vd) [a, 1])=p,(x"" (v), [, 1]),  neN.

The function g(x)=x"“ is holomorphic in any circle not containing the

zero point. Thus by the theorem of S. N. Bernstein (ci. G. Meinardus [11])
we find by taking account of the transformation of the interval [ —1,1]
onto [a, 1] that the geometric decrease

i l + /’_71 "
/)”(-Yq (Yd)* [(1, 1 J): 0 <—\4> . ne N*
] . \/ad
occurs in contrast to the approximation on [0, 1] (cf. (7)).
In the following we are mainly interested in the behaviour of the minimal
deviation p,(f. (4,), [a, b]) in approximating a function f by Miintz
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polynomials on intervals [a, 6], « >0, where the function f'is assumed to
be holomorphic around the approximation interval [a, b].

2. A SpeciIAL MUNTZ APPROXIMATION PROBLEM

M. Hasson has regarded (cf. [5, 6]) the special “Miintz problem” of the
approximation of functions by usual polynomials p, in which for a fixed
ke N the coefficients of x* are zero, i.c.,

palx)=3 ax'. neN.

y=10
v#EK

We define for k&, ne N, k<n, fe C[q, b} the minimal deviation

}. (9)
fa.h]

First we look at the approximation of the function f(x)= x* by the other
power functions x*, ve N, v+#k. This example reflects some peculiarities of
the general Miintz approximation problem.

The alternating properties of the Chebyshev polynomials of the first kind
T,,neN, lead to the following

p (S (v), [a, b]) 1= min{_/ X)— Z a,x’
v ‘ Ve 0
vk

LeMMA 1. Let a, b, 0 <a < b, be given. Then relation

kt(b—a)

2a
T (1
Ll ( +b_a>

Proof. Considering the polynomials T,(2(x —a)/(b—a)—1) on [a, b]
the assertion follows by the same arguments as for the special case
a=0,b=1in M. Hasson [5].

Since (cf. A. F. Timan [15, p. 2261)

PR, (v), [a, 0]) = (10)

2/\'

holds for all k,ne N, k<n.

k v—m) 2Kfy v—1\2
T(k)l = 2k l‘ 2 217
(b [J " @ L (n)’" g
we get by (10)
K 1 K !
P, (1), [0, 67) = T] ACIEMY

H (VA1>2' 4
1 —
n
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for 1 <k <n. Using

1\ k —1)\2 k b —1\2
<2ka >zﬂ1_<k_k__> <ﬂ1_<‘n ><1, nzk>1,
=1

v=1
we find inequality

br(2k)!
4k

k2 )k b2k,

n < p®i(x*, (v), [0,b]) <<2k 1 o (11)

n>k> 1, for the minimal deviation p{*(x*, (v), [0, ]) in approximating
x* by the other power functions x*, ve N, v ;ék, on the interval [0, 5] (cf.
also M. Hasson [5]). But moving the approximation interval away from
the origin the minimal deviation p®(x ), [a, b]), a>0, tends to zero
geometrically.

LEMMA 2. Let a,b,0<a<b, and ke N be given. Then the asymptotic
relation

o ] NN N ST,
p®A(xk, (v), [a, b]) = 2k!(/ab)* n (m) (1 +0 <;>> (12)

holds as n — 0.

Proof. With transformation
z=5v+1/v), v=z+"~1, z=x+iy,veC,

equality
T,(z)=3(v"+1/v")

is valid for the Chebyshev polynomials T,, ne N. This follows by applying
the identity principle for holomorphic functlons to relation

He™ + e ") =cos ngp = T,(cos @),
v=e" z=cos @, @R Setting D := d/dx we obtain with

T (x)=3v"+1/v"), z=x>lLv=x+./x"—1, (13)

by differentiation

d /1 1 1 o+ /221
D\ Tn(x):—(— <l7" +_>> * DXU:— (nv" - " > X X
2 v \/xz—l
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and further for &k <n

L

ke e k R ! V'
DET (x)==n (r”+(—1) -) ﬁ)
o) P /A
(14)
k ll / ]
+ 3 En“(rwvl)‘;) F.(x)

with functions F.,v=1{1)k—1,

I ! . 1
F\‘(.\'): F\, = 5 D‘. = RN D,\‘ ! —— |,
NASE NASES! v

not depending on neN. Hence combining (13) and (14) we find setting
K:=142a/(b—a)>1, ri=rk+ \,”'Kzf 1 for any fixed ke N the asymptotic

relation
| 1 k . 1y
THw)=xz{———] n"¥" |1+ 0]|- ) as n— L.
2\ T ny,
N
With (10) it follows that

(b — V(R 1 }F /
P, (v), [a,b]):k'(b a;k(}'lh b n Fr ”(l+0<%>>

as n - . In view of

2 — —— b+ a

r=ER+ KT — 1 :lf_.—\/;

—d ‘h— /a
A% \V

we have established relation (12).

Remark 1. Since

+a _ (Vb+a)
\”," a b —d

| o1

J
\/’/ J—
we see from (12) that for fixed length &~ of the interval {a,b] the
geometric rate of the minimal deviation p!*'(x*, (v), [, b]) increases with
the distance of the interval from the zero point.

A geometric rate of the minimal deviation p!*'(f. (v), [a. b]), a>0, also
occurs for all functions f holomorphic around the approximation interval
[a, b]. This is stated in
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THEOREM 1. Let O<a<b and keN be given. Let E((h—a)/2 + k)
denote the ellipse with foci a, b and great half axis of length (b —a)/2 + K,

bh— b — b
E a+K = ::x—Hy:.\‘:( a+k‘ cos ¥ + +a,
2 . 2 2 (15)

y= /<h7a+K>zlsin v v e [0, .27{)}

where n is a humber 0 <k <a. Suppose the function f is holomorphic in a
region containing the ellipse E((b—a)/2+ k), 0<w<a, and its interior.
Further let f(z) be real for real =. Then inequality

(Vb—atr+x)
b—a

pi,"’<.f;(v),[a,h]><A< ) neN. (16)

holds with a constant A not depending on n.

Proof. Let

fo=% aT, (2('““)—1) (17)

v=10 . b*a

be the Chebyshev expansion of f on the interval [, #]. By assumption fis
holomorphic on an ellipse E((b—a)/2 + x,) (cf. (15)) and its interior with
K, =k +¢, ¢>0, small enough. By applying transformation

2(x—a)
b—ua

— 1, xela b], xe[—1. 1],

X=

mapping the interval [a, b] onto [—1,1] and the point ¢—~x, on
—(14+2k,/(b—a)) we obtain just as in the proof of the Bernstein theorem
{cf. G. Meinardus [ 11, p. 91]) the bound

s 2K,
7= b—a
2B(x S
la,| < 1(;:1), ve N, where Ri:=q +qg7— 1 (18)
1

B(Kl):: max:&l-_'l{h a2+ w() |Jf(:)l

The inequality of S. N. Bernstein (cf. [ 11, p. 927} yields

-— b
lﬁ(z( “)1>‘<R:, veN,;eE(—‘fﬂz),
b—u B 2
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for any x, >0 with Ry =¢,+ /¢35 — 1, g, =1+ 2x,/(h—a). Now we choose
a number x,, kK, > Kk, > k. Since R, > R, it follows by (18) that

- 2(z —
< |1 (A=)
V=0 —d /1 b—u
for:eE< 5 -H\'z) (19)

L

< 2B(k,) Z <%>r< v

v=0 1

and the Chebyshev expansion (17) is uniformly convergent on the ellipse
E((b—a)/2 + k) and its interior. Hence
hm Hf"/’n HI;'(lh (l)'2+K2):0 (20)

n—

with the partial sums

n 2o — N n
paz)=> a‘Tl.< (z=a) 1): Yol neN,
bia v =0

v=0

(21)

of (17) and consequently
Hpn H E(th  a)2+ wx2) S H/Apn ” E(h - a)i2 + k) + H/H E(h - a)2+ k1) (22)

<A1 ”,/{“M(h a)i2 b K2)

with a constant A4, > 0.
Let us first assume a > x, > . The transformation

:ﬁ2(:—a) |
T b—ua
maps
0 |y <1+ 24 >
K . - resp. —
«— K, resp. 0 on h—a) p -
and thus the ellipses
b‘a b+(,l ~f 2K1 ~ 261
g - . 1 .
E< 3 +h2>resp.E< >0ntoE(l+b_a>resp E( +bfa>

Here E(0), 1 <o, denotes the ellipse with foci —1, | and great half axis of

length o. Setting
2a 1+ 2K,
q2i= h—a

b—a

go:= 1+
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we see that transformation

{v+1/v) (23)

-

maps

tveCilyl=1} onto [—1,17,

T = 2
treCijpl=Ryi= qo++/q5— 1} ont0E<1+b_aa), (24)

— - 2K,
{ve@:1v|=R2::qz+vq§-l} ontoE(1+bK').

—da

Moreover by (23) we have given a conformal mapping between the region
{veC: [v|>R,} and the exterior ext E(} 4 2x,/(b—a)) of the ellipse

E(1 4+ 2x,/(b— a)). Hence setting #:= v/R, by

5 1<R~+1 3 l(“+ 1)
I== v s )=—Z- T —
2\ TR ' v

there is given a mapping between

- 2
{Ewsiﬁzlﬁlz%} and E(1+h aa>

and a conformal mapping between

~, 2‘7
(7eC:13l>1]  and extE(Hb"*).
—d

We remember that ¢ > x, or Ry > R,. By a generalisation of the inequality
of S. N. Bernstein (cf. D. Gaier [7,S.33]) we obtain with (22), taking
account of the above transformations, that

RoY'
,pn(:” S ”pn ”1:'((b a)i2 + K1) <_> Ll

R,
RU "
A, 4
= (R2>

) neN, (25)
is valid for all z e E((b + a)/2). With aid of the inequality of W. A. Markoff
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(cf. G. Meinardus [11]) applied to the interval [0, b + a ] comprised in the
ellipse E((h +a)/2) it follows
) 2%kt n (n +k
n—k)’

ko) = [ pYA0) < 4, (
and thus

R "
el | < Ay n’ (ﬁ) , neN, (26)

for the kth coefficients «{"' of p, (cf. (21)), k <n, k fixed, with a constant 4,
not depending on n.

Now let ¢, e I1,\span(x*) be the polynomials which best approximate
the function x* on [a, b], ie.,

p::k)(xk’ (V), [a* b] ) = Hx/\ —qn H [a.b]> neN.
With the partial sums p,, ne N (cf. (21)), we have
/’m. L [a, by < f—p,+2y" x 71}(,”an[¢117]

H/ pn”[uh] + ‘aln ‘ p(l\} X V), [as h])

From (18) and (21) we see that for all xe [a, ] the bound
: 2
S —pai< Y ) ‘ (3= )1){
\7n+l —d

<2B(x,) Y R,*.  neN, (28)

v+

<C1R| n

is correct. Now with gq =1+ 2a/(b —a)

e
Lemma 1 yields for fixed ke N
PP, (v), [, b < Con * Ry ™, nelN. (29)
Using (26) we get
L | ptk ek, (v), [a, b]) < Cyn® Ry, neN. (30)
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In view of k, > r,>n or R, > R, we deduce from (27), (28), and (30) that
pB(f (v). [a, b1V < Bn* Ry ", neN. (31)

Setting ¢:=1+2x/(b—a), Ri=qg+./¢°—1 it follows by k,>x that

R,> R and thus
R n
lim »* (—) =0.
n o> L Rz

This combined with (31) yields for fixed k € N inequality
L) [a b <SAR™. neN,
where the constant A is not depending on . Since

(Vb—a+rK+x)
b—ua

R=

the assertion of the theorem is proved for k <a.
Now let us take k=a As before we obtain with suitable
Ky, Ka: K| > K, >a, inequality (19) and thus

hm “.f_pn”lf((h u)/'2+xz}:0 (32}

n— x

with the partial sums p,, ne N (cf. (21)),

n

pal2)=3 o ="

y =0

The circle K, = {z€C: |z| <} with ¢:=x,—a is contained in the interior
of the ellipse E((h—a)/2+ k) and by Cauchy’s integral formula we find
with the power series

of / relation

.f‘“(O)vpi,"(O):2m‘£g‘:nTdc,
and
(k) __ plk) o . 5
¢ _:x“k,,}‘ :f (0) pn (O) g ”f pn“L(t»n— a),r._+f\3}. (33)

k! a*
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Hence by (32) for fixed ke N

lim fe, -2 =0

"n—o

or [x{" < A, for all ne N, n>k, with a constant 44> 0. Now by (27), (28),
and (29) we get immediately for fixed A e N the bound

PR, La b)) AR, "

b Ja\ "
(5

v Vva

nelN,

and the assertion is proved also for k = a.

Remark 2. For fixed «, b the geometric factor

\/h a+l\+\/h)'
b—a

H(k):= (34)

in (16) is a strictly monotonically increasing function of x, 0 < x <a, with
H({0)=1 and H(a):(\/h-i—\/’Z)/(\/;f\/;). For the special case k=a
inequality (16) is given in M. Hasson [6].

y (16) for functions f holomorphic only in ellipses E({b—a)/2 + k),
with 0 < w <q, that are ellipses not containing the “singular point” zero in
the interior, the minimal deviation p*'(f, (v), (@, ]), a> 0, tends to zero
geometrically with the same factor (34) as the minimal deviation
p.(f. (v), [a,b]) in approximating with all polynomials from I7,.
Moreover since

P () [a, by <p( S, (v), [a, b])

the converse of Theorem 1 follows directly from the converse theorem of S.
N. Bernstein for the approximation by all algebraic polynomials (cf. G.
Meinardus [ 11, p. 921]).

The situation is changed if the function f is holomorphic in a region con-
taining an ellipse E((b—a)/2 + k) with k > a. The difference between our
special Miintz problem and the usual approximation by polynomials in this
case 1is elucidated by

THEOREM 2. Let a, b,0<a<b, and ke N be given. Let the function f be
holomorphic on the ellipse E({b —a)/2 + k) (cf. (15)) and the interior where x
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satisfies k > a. Suppose f(z) is real for real z. If in addition {*(0)=0 then
with a constant A

/’/;j__. r’/’_,Z n
V u+k+\/l\)> ’ nel. (35)

P f: (v), [a ) < A (
h—a

In return for a function fe C[a, b] let inequality (35) hold with k, k > a> 0.
Then there exists a function f holomorphic in the interior of E((b—a)/2 + k)
whose restriction to the interval [a, b] coincides with f. Moreover f*(0)=0.

Proof. To prove the first part of the theorem we proceed just as in
the proof of Theorem 1. Taking as before «,, k,; k, >k, >a and setting
again g,=1+2x,/(b—a), Ri=q,+ \//(7%——_1» qg,=142K5/(b—a), R, =
g2 ++/q2— | we obtain from (17), (18), and (21) inequality

. < 2(z—a)
|f(-)~p,,(-)|<r;I[a‘w‘T‘.( — _IN

<2B(x) Y <§—> (36)

von+1

R2 "
<B, R,
!

for all zeE((h—a)2+k,). Since x,>a the circle K ,={zeC:

|zl <0},0:= k,—a, is contained in E((h—a)/2+ k,) and as in the proof
of Theorem 1 we get with the Taylor expansion

flz)= Z e

v=10

of f by (33) and (36) using ¢, =f"“'(0)/k! =0 the bound

’1}("” < Hf‘l’n“eub a),r2+,m<Bz (Rv

0 R—~> , k.neN;k<n, kfixed, (37)

4 1
for the coefficients a{"’ of p,. Combining (27), (28}, (29), and (37) we find
. N 1{2 n
P (), [a b1 < C Ry + By (k_> R," (38)
1

with Ry=qo++/q5— 1. go= 14 2a/(h—a). Now we can choose a number
Ky, K| > K> K, >a, k, small enough such that with

wo {2 Y /b—a+r+ k)
Ret+- 2y (12 o2 hmats VK)
b—a b—a h—a
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inequality
R, | 1
Y R() < R
R,
1s satisfied. Thus (35) follows from (38). The first assertion of the converse
statement i1s proved in the same way as the corresponding assertion for the
usual approximation by polynomials without any gap (cf. G. Meinardus
[11,p.92]). With the polynomials g, € IT,\span(x*) satisfying

/)1Ik)(./; (V), [a* h]): H/i qn;‘ [a.b]o ne N~

we set hyi=¢qq, h,:=¢q,—q, ,:n=1,2,.. The series

fx)=3 h,(x)
n=1
is uniformly convergent in [«a, h]. Moreover it follows as in [11] that the
function

Fizy=% hl2) (39)

n—0

is umformly convergent in any ellipse E((b—a)/2 + r,) with k,, 0 <k, <k,
ie., f is the restriction of the function 7 holomorphic in the interior of
E((h—a)2+x). Remembering A 0)=0, neN, by applying the
Weierstrass theorem to the series (39) we finally obtain

7900)= 5 A(0) =0,

2
o O

3. THE APPROXIMATION OF HOLOMORPHIC FUNCTIONS
BY MUNTZ POLYNOMIALS

We consider first the approximation of the power function f(x)=x",
/20 fixed, by help of polynomials from 77,(4,) on [a, b] with ¢ >0. The
following theorem (cf. Borosh, Chui, and Smith [3]) says that the minimal
deviation p,(x* (4,), [a, b]), a=0. is the smaller the closer the numbers
A.,v=0(1)n, are to the number /.

THEOREM 3. Let neN, 220, a, b, 0<a<h, be given. The minimal
deviation

p,,(x’j (A0, [a, p]) (40)
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with values 4A,, v=0(1)n,

—l<qg<n,

ns

0<rg< i< <a, <A<, 1< <4

is a strictly monotonically increasing function of the values /.

strictly monotonically decreasing function of iq,..., £,.

g 1 Ay and a

Proof. The proof is just the same as the proof of Theorem 2 in Borosh,
Chui, and Smith [3] where only the case A,¢ N, v=0(1) n, has been con-
sidered.

Estimates for the minimal deviation (40) can be obtained by comparing
with the values

X Z o, x’ , 7> 0.
V=0 ‘Fuh]
vk

PN, (yv), [a, b]) = min

Since

1 n

| 2 ¢

we find from (12) for fixed £ e N, 0 <y < o0, the inequality

" ,}7 //—‘,' SR
k <\/7 hi \/7> < p::k'(x}‘k# (}’\’ )9 [ai b]) <\/ * \/ a4 ) s (42)
h ‘b /a_ f N, fa
ne N, with constants A(k), B(k) not depending on n. We notice that given
a, b, 0 <a<b, the factor

va

v=20

[a.B] [a b7]

gly):= ——V/E He

NN
is strictly monotonically decreasing in 7, y > 0. This follows from

Vb floga—logb) -0

NGENCS

g'(

More generally we get from (42) by aid of Theorem 3 the following

THEOREM 4. Let keN.a, b, 0 <a<b, be given. Suppose the sequence
(£4,) {cf- (2)) satisfies 0<d< A, —A <D<, veN. Then for the
minimal deviation

fu_h]}

P, (5,), T, b1): = min {

ZCX\’

yv=10
v#Ek
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the bound
RN e
n—A< [Td V;ﬁ) \p::A' A La b)) < ( bn \\;7> (43)
VO TN

holds for all ne N with r:=[+4,/D] and constants A, B not depending on n.
(Here [ x] for xe R denotes the largest natural number k, k < x.)

Proof. Setting with k, k <n,
ri= [r/D], ai= A, —Dr=0
and using

Ay S A+ Dy, u=1(1)yn—k
A p=hpe— Dy, w=1(1)r,

we deduce from Theorem 3 that

P (A [a b < pl) o (8 (A + Dlv—r)), [a, b])

n+r -k

ir) k(xrl) + 1‘ ('\’D+ J(), [(l, b])

_ln+/

By p},’i,_(. s (Ag+D(v—r)), [a,p]) we have denoted the minimal
deviation in approximating f(x)=x" by the functions x**"P0 =",

v=0(1)n+r—k,v+r Since

H

z O(‘,.\’;"‘ + !

v—0 \[u.h] hum
it follows with (42) and (44) that
pilk)(' (A [a b] <b1 l)‘1+r A(\Crl) ’ [a b]
1 /bl)+\/25 nor+k
<b*B(r ,<V ﬁ>
)(n+ r—k) v/’?‘ JaP

Taking a constant B satisfying
r h[) ;D rik
B>b°‘B(r)< ! > <V tva > . neN,
n+r—k _

the bound

X i B b )+ a "
[):’A‘(X’»A’ (/Vv)’ [as h])<?<\/—r—‘—'\/7-—l)> N HEN’
v A
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is established. To prove the lower bound in (43) we assume d > 0 since for
d=0 the bound is trivially satisfied. Putting f:= i, —kd we get by
Theorem 3

P, (A,), [a, 1) 2 pl(x™, (A +d(v—k)), [a, b])
=p M (dv+ B), [a, b])
and in view of

z 2%,

v=0

zd’
[w.b]

n
Z a\,xh +f

v=0

[a.b]

the bound (42) leads to the left inequality of (43),

PN, (4,), [a bT) > @ A(k (f+ Ve )
NG
L<f+f>
k \/_ \/_
and the theorem is proved.

Given a sequence (4,), 0<d<4,,,~ A, <D< o0, veN, and a number
/=0 with

neN,

min|A—4,| =:0>0, i, ,<A<ig,keN,
ve N

then by Theorem 4 for the minimal deviation p,(x* (4,), [a, b]) in
approximating the function f(x)=x* by polynomials from I7,(i,) on
[a, b], a> 0, inequality

FANGENCA ; B (/P + JaP\ "
7(—\77[—)—(;—_——\7——;;> < p, (x5, (4, [a, b])<—<7—b—n:—\/7> R neN,

nr

(45)
holds with r:=[4/D] and d:= min(d, §). In [1] the upper bound

i G e <o Ja (=) o men,
b
has been given.

But also more generally for the approximation on intervals [a, b] with
>0 (in contrast to the approximation on [0,57]) the quantity
p.(f, (A,), La, b]) has a geometric decrease for all functions holomorphic in

64045 2-7
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a sufficiently large region around the approximation interval [a, b]. This is

stated in

THEOREM 5. Let a, b, 0 <a < b, be given and let the sequence (1,) satisfy
O<d<i,.,— A <D<oo, veN. Suppose the function [ is holomorphic in
the interior of K g and continuous on Kz, Kg:= {zeC:|z| < R} where R is a

number R > b. Further let f(z) be real for real z. Then for any q,

P 5D )
0<g<o:= min {<§>1 V’bn+\/au}
: p ,

IN/EENCR
there exists a constant A = A(q) not depending on n such that
pulfi(4), [a, b])<Aq ™

holds for all ne N.

Proof. For the coefficients ¢,, ve N, of the Taylor expansion
flzy=3 ¢z
v =0

of f we get by Cauchy’s integral formula the bound

=l Ea)

2nidis = r C

le,|=

ve N,
M
<—,
R\
with M:= max . _.{|f(z)}. For any me N inequality

/’[m,ru](f; (4 ) La. b)) < Z le; | p[mnd](x)? (4., La, b])

A=0

+ Y el b

A=m+ |

is valid. We seek for upper bounds for the minimal deviations

p[m,r’d](xA’ (;"\')’ [a, b] )’ /ZE Na /1 < m.

(48)

(49)

(50)

If A=A, then the value (50) is less or equal to the minimal deviation in

A+ D
5

approximating g(x) = x* by the power functions x X

A+ D{{mjd} ~ [2/d]).
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This follows from Theorem 3 since 4, <A< 4, ., ke N, implies A > kd and
[4/d] = k. Hence using (41) we find

p[mx(ﬂ(-’f;} (4.), [a, p]) < /)‘((2,); /- [;.,u/]( (A+vD), [a,b])
gb/P[(?;'u/] [aid] (1, (vD), [a, b]) (51)
=h* P([(,),l W] - [Aid] (1, (v), [al)’ bD])

for 4, < A< m. Now by (10)

_ 1

(%)
" ﬁ_a

for any a,f, 0<a<f. Using (13) we obtain with x=1+2a/(ff —
v=x+./x*—1 the bound

T,,<l+ 2 >=l<v"+i>>lv” <\/ﬁ+\/ > nelN,
B—a 2 ) \/— S

and in view of (51) we get

D [mid] + [5id]

i) [a, b])<w<V +Vh> . oneN,  (52)
AN

for A, i, <A< m. For the finitely many Ae N, 4 < 4,, Theorem 3 yields by

applying

p, (L, (v), [, B])

Y {m: d]

m

‘ xA _ Z fx‘,x/'[) +vD

y=0

m

x(/l Ag) D Z 1“X\*

v=0

g bm
[a.b]

[a”.60]
inequality
P l'm,r’d](xiv (/:“v)v [a’ b] ) < p[m,r'd](x)" ('l() + vD )7 [a, b])
: . (53)
g b/.\] p [m,r’d](x“ /.()i,’/)’ (V), [aD’ bD] )

The function A(x) =x"* *"” is the restriction of a function holomorphic in
any ellipse around the interval [a, b] provided that the ellipse does not
contain the zero point. Taking account of the transformation of [a”, b”]
onto [ —1, 1] a result of S. N. Bernstein (cf. [2]) says that inequality

pn('\,(/l—fiobrl)’ (V), [aD’ hD])< B-r"- n().()—).—l)),rl)7 1 <ne N,

is valid with x=/{ h”+V/’F)/(\/b_”—V/a—”) and a constant B not
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depending on x#. Hence by (53) there exists a constant C such that for
meN, d<m,

b”+ ;p —lmd] [ D ’
P my d] x* , (v), [a, b])<Cb”) <7\/_7> [g} (54)

for all 2e N, 4 < 4,. Combining (48), (49), (52), and (54) we obtain

pfm d] f [a b]

Tl TP P+ SgPy L
R =
i=0 b" —

oM ,Zn <<R>d> ).,r’d(\/ﬁ + \/;5> [4:d] - [md] Y i (R) .
PR IEANN JhP = SaP L=\
bD DN — [mid] 20i D d\ —[m:'d]

(\/ +\/a > l:-—:| +k2’n.o_— [m:d] +k3<<§> >
P — \/a d b

el

and constants &, k,, k; not depending on meN. Thus to any number
q < ¢ there exists a constant 4 = A(q) such that (47) holds as stated.

The upper bound (47) for the minimal deviation p,(f, (4,), [a, b])
depends on the value ¢ (cf. (46)). For functions f holomorphic in a suf-
ficiently large region, i.e.,

R d bl)+\/a[)
55
<) fA /a (>3)

the geometric factor ¢ is bounded (from above) by the right side of (55)
which doesn’t depend on f and the rate of convergence increases with the
distance of the interval [q, b] from the origin.

with

4. A CoNVERSE THEOREM

Regarding again inequality (47) with ¢ given in (46) the bound in
Theorem 5 suggests that for fixed interval [a, b], a >0, generally even for
entire functions f the geometric rate of p,(f, (4,), [a, b]) is bounded by a
number depending only on the distance of the interval [a, 5] from the zero
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point and on the difference b—a. More precisely the following
generalisation of the converse resuit of Theorem 2 holds.

THEOREM 6. Let a, b, 0 <a < b, be given and let the sequence (4.,) satisfy
0<d<i,, | — i, <D<, veN. Suppose, for a function fe Cla,b], the
inequality

pulfs (4,), [a, b])<Ar™",  neN,

holds with constants A and r, where

e P i
F>K.= P \/EB~\/a_D' (56)

Then there exists a Miintz series

7= Y e

v=0

absolutely convergent in Kg:= {z€Coq: |zI <R}, with R=b-(r/k)"?,

whose restriction to the interval [a, b] coincides with the given function f.

Proof. For convenience we apply a transformation to the
approximation problem. Setting

Xi=x/b,  F(X) = f(hX)=/f(x) (57)

by assumption equivalently to

< Ar 7", nelN,
[a.b]

n
[0 § o

4]

inequality

<Ar™", neN,
farb. 1]

H F(x)— Y alph gt

v=0

holds. Putting a:=a/h, 0 <a < 1, this means that
puF (A [, 1)< Ar 7, neN.

With polynomials ¢, € I1,(4,) satisfying |[F—gq,ll,13<4r™", neN, we
define p,:=¢q,—q,_,:n=1,2,..; po:= q,. Then the series

L
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is uniformly convergent in [z, 1] and moreover it follows

Hpn“[a.l]g HF_an[xI]+ Jrfiqn IH[xI]v

neN, (58)
<Br
with a constant B. For the polynomials
p3):= Z almive Il (4,) (59)
-
clearly
PN Y a2 (60)

v=1)

is correct where Z is an element of the Riemann surface of the logarithm
Cloe- Since

log*

i 1Pl (e
(k) e —
PR (A, [ 1] < lai™|

we have

Hpn H[az 1]
PEIEH, (4,), [on 1])

(61)

a1 <

for all k, ne N, k <n. By Theorem 3 the value p*(¥*, (4,), [a, 1]) is not
smaller than the minimal deviation in approximating g(%)=x" by the
functions £+ K y=0(1) n, v #k. Consequently
PENEA (4,), Lo, 1D 2 o (R (A + (v — k) d), [, 1])
;au\ kd p(k) ~dA [EX 1] (62)

=% K pRI(RE, (v), [a", 17).

We remember (10),

k(1 —a)t

2dd
(1
n ( + | — 1(1>

pIIEE, (v), [as 1) =
54




APPROXIMATION BY MUNTZ POLYNOMIALS 189

for k, ne N, k <n. Applying the inequality of W. A. Markoff (cf. [11]) to
T, on the interval [ ~g, ¢], ¢> 1, we find the bound

%KY n [n+k
| T g )l\(Zq n+k( >H T, 40 (64)

From (13) it follows with ¢ > 1
”Tnlevq.q]: Tr1(q)<(q+\/ (12‘ 1)’1 (65)

for all ne N. Combining

n <n+k Tz (P =y? )< nk <n”< " for k<n
n+k\n—k)" (2k). Sk St =
with (63), (64), and (65) we get
(1—a') ¢*

P (v), Lo, 1]) >
22k erz(q+\/q2_ l)n

for all k, ne N, k<n with g=1+22%/(1 — «*). Since

1+
g (1 — a9y = (1 + ) and g+ g —1=

1 —

<

4

we find

d —n
pSIk)("x'-k’ (V), [de’ 1]) (12_;(“”) <1 . )

1 Jal
and in view of (62) using 0 <a < 1 finally
‘)Mkfkdz d\k l d\ —n
pE, (1), [, 17) > 2 ) (L
2% e" 11— Jod
2 aDn (1 +\/§1> -n
2/1€n 1_\/;1

for all k&, ne N, k <n. Hence by (58) and (61) with

2e1+\/-
2”1 Sat

- "
M < B i
lay"| < ;

a
where o =—
b

(cf. (56)) inequality
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is valid for the coefficients a}"', k =0(1) 1, of p,,, ne N (cf. (59)). Thus (60)
implies

PN Y lag] (2% < B Z ( ) < ) (e

k=Q

neN, (66)
< B{n+ DHY(1 — &),

for all Ze Cy,,, 12| < ((r/k)(1 —¢))"" where ¢ is any number ¢ > 0 satisfying
(r/x)(1 —g)>=1. From

FEOIS Y 1pEN<B Y (n+D)(1—¢)' <o

n=0 n—=0

we deduce that the series

3 Z Pa(Z) (67)

n=0

is uniformly convergent for all ZeC,,, [Z[ <((r/k)(I —&))'P. Moreover
expansion (67) of F as an absolutely convergent double sum allows a
change of summation which leads to a representation

0-$ (£ ) 5 ($ar)

n=0 k=0 A=0 Np=0

¢
8

Hagh
t
¢
X

v

absolutely convergent for Z€ C,,,, 12| < ({r/k)(1 —&))"". Since &£ >0 may be
chosen arbitrarily small the series (68) is absolutely convergent in
|3] < (r/x)"P. Taking account of transformation (57) by setting

-=b3  f(z)=F(E)

we have shown that the series

.
Z c.z™

v=0

3“\*“.1

9= 5 5

is absolutely convergent for all zeC,,, |z] <b- (r/k}"?. Furthermore the
restriction of the function f to the interval [q, b] is just the given function

S(x) = F(x/b).
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We notice that the estimates in the proofs of the preceding Theorem 5
and Theorem 6 have led to assertions which describe the situation
qualitatively. They don’t give sharp results in general.

5. LINEAR APPROXIMATION BY EXPONENTIAL SUMS

In Section 1 by help of transformation (4) it has been shown that
“Miintz problems” are equivalent to corresponding problems of
approximation by exponential sums. Now we summarize the results above
in terms of the (linear) approximation by exponential sums.

By transformation (4) intervals [0, #] are mapped onto infinite intervals
[2, oc] with = —logb and intervals [a, b], a>0, correspond to finite
intervals [a, ], x= —log b, f = —log a. Moreover taking the continuation
of (4) to complex variables,

z=¢ s=1+Iit,
s= —log z, 7€ Cyyys

we see that a circle K= {zeC,,, 12| <R}, R>0, corresponds to a right
half plane Hz:= {seC:res> —log R}. Hence the results in [14] suggest
that a geometric rate of the minimal deviation d,(f, (4,), [« oc]) (cf. (6))
mm approximating a function F by exponential sums from 4,(2,) (cf. (5))
where the fixed sequence (4,) satisfies 0 <d<4,,,—4,, veN, occurs
exactly for those functions F which are restrictions of Dirichlet series

v

Foy= 5 co i

v=20

convergent in certain right half planes H ;. Whereas for the approximation
on finite intervals [, f] the minimal deviation é,(F, (%,), [« B]) for the
exponential approximation where the numbers 4., veN, satisfy
Avg1—A.<D<oo tends to zero geometrically for all functions F
holomorphic in certain regions around the interval [«, f]. We give an

ExaMpPLE. Let us consider the approximation of the function
F(t)=1/(1 +t) by exponential sums of the form (1, =av, veN)

din=> ae ™ (69)

v=0
on the interval [0, oc ] resp. [0, 1], where « is a fixed number a> 0. This
function F is holomorphic in the half plane re s > —1 but not representable

as a Dirichlet series. We choose 2 =1. The computed minimal deviations
0,10, 00 := O,(F, (v/2), [0, cc]) resp. 0,00, 1]:= d,(F (v/2), [0,1]) are
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TABLE |

" 9,[0, ec ] 8,00, 1] Pal0. 1]
2 4510 2 3310 ¢ 731077
3 34-10 2 3.9-10 131077
4 31-10 ¢ 47-10 ° 2210 9
5 28-10 ° 54-10 ° 37-10°°
6 261072 66107 64-10 °

listed in Table I for n=2,.., 6. The last column of Table I gives as com-
parison the minimal deviations p,[0,1]:= p,(F, (v), [0,1]) for the
approximation of F(x)= 1/(1+ x) by algebraic polynomlals on the interval
[0, 17.

Table I contains the ratios of consecutive minimal deviations.

The ratios for the exponential approximation on [0, oc ] (first column,
Table 11) indicate that a geometric convergence of §,[0, oc] cannot be
expected. For the approximation on [0, 1] a geometric rate occurs in the
exponential case as in the polynomial case. In fact the theorem of S. N.
Bernstein (cf. [11]) leads to the asymptotic relation

1 —
lim sup(p, [0, I )" = ———, 3+ /10=6.16,
o 3+./10 v

Y%

and with some transformation arguments we find

o I+ etve+r2 e
lim sup(3,[0, 11)""' =~ with k= +V€tﬂi+ V€736
n— % C /e —
Y

The optimal choice of « for the approximation of F(¢t)=1/(1+1) on [0, 1]
by sums of the form (69) is the number %, =log((1 + f}/2 ~0.4812 with
an asymptotic rate

¢(1+\/ Y2+ 1

lim sup(3,(F. (), [0, 11" =—, = ~835.
" 0 V521
TABLE 1
5,00, %] 5,00, 11 p.l0, 1]
n T Ty —_—
50 1[0, ] 5,1 [01] P 0.1]
2 1.30 8.46 5.62
3 111 8.30 591
4 1.10 8.28 5.95
5 1.08 8.18 5.96
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